Preparation of carbocyclic analogues of $\mathbf{2}^{\prime}$-deoxyribonucleotides possessing a phosphonate substituent at the 5^{\prime}-position

Alex F. Drake, ${ }^{a}$ Antonio Garofalo, ${ }^{b}$ Jennifer M. L. Hillman, ${ }^{b}$ Valeria Merlo, ${ }^{b}$ Ray McCague ${ }^{c}$ and Stanley M. Roberts ${ }^{\dagger}{ }^{, b}$
a EPSRC National Chiroptical Spectroscopy Service, Birkbeck College, 20 Gordon Street, London WCI H 0AJ, UK
${ }^{b}$ Department of Chemistry, Exeter University, Exeter EX4 4QD, UK
${ }^{\text {c }}$ Chiroscience Ltd., Science Park, Cambridge CB4 4WE, UK

The epoxycyclopentanol 10 is converted into the methylphosphonate 15 in $\mathbf{3 0 \%}$ overall yield. The diol 15 is converted into the protected carbocyclic nucleotide mimics 16, 18, 21 and 22 in $\mathbf{3 8 - 7 0 \%}$ yield. The diol 15 is resolved using a lipase-catalysed esterification and the absolute configurations of the enantiomers are deduced by CD spectroscopy.

Introduction and background information

There is considerable current interest in the chemistry and biological activity of carbocyclic nucleosides and nucleotides. ${ }^{1}$ Our recent work in this area has concentrated on the production of noraristeromycin $\mathbf{1 ,}{ }^{2}$ the phosphonate 2 , as well as the diphosphorylphosphonate 3^{3} which was found to be a potent inhibitor of HIV-reverse transcriptase.

2
1

3
The preparation of carbocyclic deoxyribonucleosides 4 has been under scrutiny since the pioneering work of Shealy and O'Dell. ${ }^{4}$ Fluoro compounds of type $5,{ }^{5}$ and the bromovinyluridine derivative 6^{6} have been noted to be potent anti-herpes agents. The preparation of phosphonates of type 7 is of interest to us and we have published a communication describing the preparation of one member, $\mathbf{8}$, of this series. ${ }^{7}$ In this paper we describe the synthesis of a series of compounds of type 7 as well as a method for obtaining these compounds in optically active form with an established absolute configuration. The availability of optically active synthons allows target molecules to be prepared in homochiral form if the desirable biological activity resides in one enantiomer, as is often the case for molecules of the type 4,5 and 6 .

Results and discussion

Cyclopent-3-enol 9 can be oxidized to the epoxy alcohol 10

[^0]
$4 X=H$ $5 X=F$

7

6

8
(Scheme 1) using a literature procedure. ${ }^{8}$ Boiling the epoxide 10 in a mixture of dimethyl sulfoxide and water containing potassium hydroxide gave the crude triol 11 which was isolated, purified and characterised as the triacetate 12. Hydrolysis of this triester liberated the triol 11 which was converted into the silyl acetal 13 on treatment with di-tert-butylsilyl ditriflate and 2,6dimethylpyridine (2,6 -lutidine) in dimethylformamide. ${ }^{9}$

The phosphonate moiety was introduced using the requisite triflate $\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{CF}_{3}\right]^{10}$ whereafter removal of the silyl group from the bicyclic compound 14 was achieved using ammonium fluoride in methanol ${ }^{11}$ to furnish the diol 15.

The target compounds were readily prepared from the diol 15 under Mitsunobu reaction conditions. Thus, 6 -chloropurine, the diol 15, triphenylphosphine and diethyl azodicarboxylate were allowed to react in dioxane to give the purines 16 and 17 in the ratio $\sim 6: 1$ and in 82% overall yield (Scheme 2). The isomers were distinguished by their UV absorbance spectra. ${ }^{12}$ Note that displacement of the 3^{\prime}-hydroxy group did not occur due to the steric hindrance offered by the phosphonate unit.

Similarly, 2-amino-6-chloropurine reacted with the diol 15 under Mitsunobu conditions to give the $N-9$ substituted purine 18 (isolated as the diacetate 19 and then deacylated to give 18) and the isomer 20. The ratio of purines 18:20 was $\sim 12: 1$ and the overall yield was 41%. As with the 6 -chloropurine derivatives, the isomers were distinguished by their UV absorbance spectra. ${ }^{13}$

Scheme 1 Reagents and conditions: i, Bu'OOH, $\mathrm{VO}\left(\mathrm{acac}_{2}\right)^{;}{ }^{*} \mathrm{ii}, \mathrm{KOH}$, $\mathrm{H}_{2} \mathrm{O}-\mathrm{DMSO}$, heat: iii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, RT, 56% (2 steps); iv, $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}, \mathrm{RT}, 72 \% ;$ v, $\mathrm{Bu}_{2}^{\prime} \mathrm{Si}(\mathrm{OTf})_{2}, 2,6$-lutidine, DMF, $0^{\circ} \mathrm{C}$, $94^{\%} \%$; vi, $\mathrm{BuLi},(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{CF}_{3}, \mathrm{THF},-25^{\circ} \mathrm{C}, 93 \%$; vii, $\mathrm{NH}_{4} \mathrm{~F}, \mathrm{MeOH}, \mathrm{RT}, 84 \%$.

The diol 15 reacted cleanly with 3-benzoyl-5-bromovinyluracil to give the protected nucleotide mimic $21(60 \%)$, whereas reaction of 15 with N-3-benzoylthymine ${ }^{14}$ gave the desired compound 22 as the major product (49%) but also afforded the isomer 23 and the N-debenzoylated compound 24 in 15% and 14% yields, respectively. In this case, the isomers were distinguished by a 2 D NMR ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ correlation experiment. ${ }^{15}$ For the N-alkylated product 22 a 3 -bond coupling interaction was observed between $\mathrm{C}-6$ and $\mathrm{H}-\mathrm{l}^{\prime}$. This was not observed for the O-alkylated product 23.

Resolution of the racemic form of the diol 15 was achieved using an enzyme-catalysed acylation process. Reaction of the diol with vinyl acetate catalysed by Lipase PS (Amano) for 30 h at $30^{\circ} \mathrm{C}$ afforded equal amounts of the acetates $(+)-25$ and (-)26 (total yield 70%) and recovered dextrorotatory starting material (23%). Acetate (+)-25 was treated with potassium carbonate in methanol at $0^{\circ} \mathrm{C}$ to give the diol $(+)-15(77 \%$ ee $)$ while acetate (-)-26 was deacylated to give the enantiomeric diol ($>95 \%$ ee). Enantiomeric excesses were determined using chiral shift ${ }^{1} \mathrm{H}$ NMR spectroscopy.

The absolute configuration of the diol (-)-15 was established using circular dichroism (CD) spectroscopy after conversion of the diol into the corresponding dibenzoate (Scheme 4). Thus, $(-)-15$ was subjected to a Mitsunobu reaction using benzoic acid as the nucleophile to give the monobenzoate (-)-27, whereupon benzoylation of the free hydroxy group afforded the dibenzoate (-)-28. A CD spectrum (see Fig. 1) was obtained for the dibenzoate $(-)-28$. Comparison of this $C D$ spectrum with previously published data ${ }^{16,17}$ allows the 1,3 diol (-)-15 to be assigned the absolute stereochemistry illustrated in Scheme 4.

Experimental General experimental

Analytical grade solvents were used for flash chromatography; the abbreviation LP refers to the light fraction of light petroleum distilling between 40 and $60^{\circ} \mathrm{C}$.

Anhydrous diethyl ether and tetrahydrofuran were obtained by distillation from sodium benzophenone ketyl. Anhydrous
dichloromethane was obtained by distillation from calcium hydride. Anhydrous dimethylformamide was obtained direct from Aldrich. All other solvents employed in reactions were Spectrograde and were used as received. All reagents were used as obtained from commercial sources unless otherwise stated.

Thin layer chromatography (TLC) was performed on Merck Kieselgel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$ glass-backed plates. The plates were visualised using alkaline potassium permanganate and/or by irradiation under a low-frequency UV lamp. Flash column chromatography was performed using Merck Kieselgel 60 , 230-400 mesh.
Melting points were measured using an Electrothermal capillary melting point apparatus and are uncorrected.
Optical rotations were measured on an Optical Activity Ltd. AA-1000 polarimeter. [$a]_{\mathrm{D}}$ Values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.
The CD spectrum of (-)-28 was measured with a JASCO J 600 spectropolarimeter at a concentration of $0.43 \mathrm{mg} \mathrm{ml}^{-1}$ in methanol with a 0.1 cm pathlength cell.

IR spectra were recorded as thin films or KBr discs on a Perkin-Elmer 881 grating spectrometer; absorption maxima were recorded in cm^{-1}. UV absorptions were recorded using 1 cm solution cells on a Phillips PU 8720 UV-visible scanning spectrophotometer; absorption maxima are recorded in nm.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on Brüker AM250 (250 MHz), AM300 (300 MHz) or AM400 (400 MHz) spectrometers; chemical shifts (δ_{H}) are reported in ppm downfield from tetramethylsilane and coupling constants (J) in Hz . The following abbreviations are used: $s=$ singlet, $d=$ doublet, $t=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.
${ }^{13} \mathrm{C}$ NMR spectra were recorded on Brüker AM250 (62.9 MHz), AM300 (75.5 MHz) or AM400 (100.6 MHz) spectrometers; chemical shifts (δ_{C}) are reported in ppm downfield from tetramethylsilane.

Mass spectra were run on a Kratos Profile HV-3 high resolution instrument.
Enantiomeric excesses (ee's) were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using tris[3-(heptafluoropropylhydroxymethy-lene)-(+)-camphorato]europium(III).

3,4-Epoxycyclopentanol was obtained from Cookson Chemicals Ltd.

Experimental methods

($1 \beta, 2 \alpha, 4 \alpha$)-1,2,4-Triacetoxycyclopentane 12

To the epoxide $10(1.00 \mathrm{~g}, 10.0 \mathrm{mmol})$ in water $\left(73 \mathrm{~cm}^{3}\right)$ and DMSO ($13 \mathrm{~cm}^{3}$) was added potassium hydroxide ($168 \mathrm{mg}, 3.0$ $\mathrm{mmol})$. The mixture was refluxed for 3.5 h and then cooled to room temperature. The water was removed in vacuo and the DMSO solution azeotroped several times with toluene. Pyridine ($20 \mathrm{~cm}^{3}$) and DMAP ($78 \mathrm{mg}, 0.64 \mathrm{mmol}$) were then added to the DMSO solution. The mixture was cooled to $0^{\circ} \mathrm{C}$ and acetic anhydride ($6 \mathrm{~cm}^{3}, 64 \mathrm{mmol}$) added dropwise over 5 min . After 24 h the solvent was removed in vacuo. The residue was taken up in water ($20 \mathrm{~cm}^{3}$), and extracted with ethyl acetate ($5 \times 50 \mathrm{~cm}^{3}$). The organic phase was washed with 2 m hydrochloric acid ($2 \times 20 \mathrm{~cm}^{3}$), saturated aqueous sodium hydrogen carbonate $\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and brine ($2 \times 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give the title product as a clear oil ($1.37 \mathrm{~g}, 5.61 \mathrm{mmol}, 56 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2992 \mathrm{w}$ (CH str.), 1745s ($\mathrm{C}=\mathrm{O}$), 1433m (CH def.), 1374s $\left(\mathrm{OCOCH}_{3}\right), 1231 \mathrm{~s}$ (CO), 1074 ms and $1043 \mathrm{~ms} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.72(1 \mathrm{H}$, $\sim \mathrm{dt}, J 15.3,4.0,3-\mathrm{H}), 2.00\left(10 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.3 \times \mathrm{OCOCH}_{3}\right)$, 2.19 (1 H, dddd, J 14.6, 6.5, 4.5, 1.3, 5-H), 2.55 ($1 \mathrm{H}, \mathrm{dt}, J 15.3$, $7.5,3-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{dt}, J 7.4,4.0,1-\mathrm{H}$ or $2-\mathrm{H}$), $5.17[2 \mathrm{H}, \mathrm{m}, 4-$ H and $2-\mathrm{H}($ or $1-\mathrm{H})] ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.83\left(\mathrm{CH}_{3}\right), 20.86$ $\left(\mathrm{CH}_{3}\right), 20.97\left(\mathrm{CH}_{3}\right), 36.80\left(\mathrm{CH}_{2}\right), 36.87\left(\mathrm{CH}_{2}\right), 72.50(\mathrm{CH})$, $76.72(\mathrm{CH}), 77.09(\mathrm{CH}), 169.95(\mathrm{C}), 170.02(\mathrm{C}), 170.35(\mathrm{C}) ; \mathrm{m} /=$ $244\left(\mathrm{M}^{+}, 1 \%\right), 201$ ($\left.\left.\mathrm{M}-\mathrm{Ac}\right)^{+}, 1.5\right], 185$ [(M-OAc) $\left.{ }^{+}, 25\right]$, 141 (53), 124 (72), 99 (89), 82 (100) and 54 (80) [Found (El): $\mathrm{M}^{+}, 244.0953 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}$ requires 244.0947].

Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{Ph}_{3} \mathrm{P}, 6$-chloropurine, dioxane, $\mathrm{DEAD}, 70 \%$ and 12%; ii, $\mathrm{Ph}_{3} \mathrm{P}$, 2-amino-6-chloropurine, dioxane, $\mathrm{DEAD}, 38 \%$ and 3%; iii, $\mathrm{Ph}_{3} \mathrm{P}$, 3-benzoyl-5-bromovinyluracil, dioxane, DEAD, 60%; iv, $\mathrm{Ph}_{3} \mathrm{P}, N$-3-benzoylthymine, dioxane, $\mathrm{DEAD}, 49 \%, 15 \%$ and 14%.

(18,2a,4a)-Cyclopentane-1,2,4-triol 11

Potassium carbonate ($224 \mathrm{mg}, 1.62 \mathrm{mmol}$) was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the triacetate $12(1.304 \mathrm{~g}, 5.34 \mathrm{mmol})$ in methanol ($13 \mathrm{~cm}^{3}$). The reaction mixture was allowed to warm to room temperature and stirred until reaction was complete (TLC evidence). Ether ($25 \mathrm{~cm}^{3}$) and hexane ($25 \mathrm{~cm}^{3}$) were added to the mixture which was then filtered through Celite. The solvents were removed in vacuo and the residue chromatograhed over silica (eluent 5:1; EtOAc-MeOH) to give the triol as a colourless oil ($452 \mathrm{mg}, 3.83 \mathrm{mmol}, 72 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3361 s , br (OH str.), 2936 m (CH str.), 1352 m (OH bend) and 1088 ms (CO str) ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.50(1 \mathrm{H}, \mathrm{dt}, J 13.9$, $5.5,3-\mathrm{H}), 1.89(2 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H}), 2.35(1 \mathrm{H}, \mathrm{dt}, J 13.9,7.0,3-$ $\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{td}, J 6.3,4.4,2-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and 4.28 $(1 \mathrm{H}, \mathrm{tt}, J 6.9,5.0,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 42.49\left(\mathrm{CH}_{2}\right)$, $42.62\left(\mathrm{CH}_{2}\right), 70.55(\mathrm{CH}), 78.64(\mathrm{CH})$ and $78.96(\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 118$ $\left(\mathrm{M}^{+}, 1 \%\right), 100\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 28\right], 82\left[\left(\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right)^{+}, 56\right], 73(56)$ and 56 (100) [Found (EI): $\mathrm{M}^{+} 118.0632 . \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$ requires 118.0630].

($1 \alpha, 5 \alpha, 6 \beta$)-3,3-Di-tert-butyl-6-hydroxy-2,4-dioxa-3-silabicyclo-

 |3.2.1 |octane 13To the triol 11 ($720 \mathrm{mg}, 6.10 \mathrm{mmol}$) and 2, 6 -lutidine (1.94 g , 18.1 mmol) in dry DMF ($88 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ was added di-tertbutylsilyl ditriflate ($2.45 \mathrm{~cm}^{3}, 6.72 \mathrm{mmol}$) in dry DMF ($12 \mathrm{~cm}^{3}$) over 1 h . After being stirred for an additional 30 min the reaction mixture was poured into ice cold water ($530 \mathrm{~cm}^{3}$). The solution was extracted with ether ($4 \times 150 \mathrm{~cm}^{3}$) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography ($95: 5 ; \mathrm{CHCl}_{3}-\mathrm{MeOH}$) of the residue gave the title product as a white crystalline solid (1.48 g , $5.74 \mathrm{mmol}, 94 \%) ; \mathrm{mp} 58-59^{\circ} \mathrm{C} ; R_{\mathrm{F}} 0.52\left(9: 1 ; \mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3441 \mathrm{~m}, \mathrm{br}$ (OH str.), 2940, 2862 both s (CH str.), 1478 s , $1049 \mathrm{~s}(\mathrm{CO})$ and $981 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00(9 \mathrm{H}, \mathrm{s}$, Bu^{\prime}), $1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$, 1.64 (1 H , ddd, J 15.4, 4.7, 2.6, 7-H), 1.78 ($1 \mathrm{H}, \mathrm{dt}, J 13.8,3.1,8 \beta-\mathrm{H}), 2.05(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.39(1 \mathrm{H}$, br d, $J 13.8,8 \alpha-\mathrm{H}$), 2.64 (1 H , ddd, $J 15.4,6.8,2.7,7-\mathrm{H}$), 4.24 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}$ or $5-\mathrm{H}$), $4.52(1 \mathrm{H}, \mathrm{dt}, J 6.8,2.0,6-\mathrm{H})$ and 4.61 ($1 \mathrm{H}, \sim \mathrm{td}, J 3.0,1.3,5-\mathrm{H}$ or $1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.55(\mathrm{C})$,

(土)-15

(+)-25, 35\%
$[\alpha]_{\mathrm{D}}^{24}+19.7$
(c $0.60, \mathrm{CHCl}_{3}$)

(+)-15
$[\alpha]_{\mathrm{D}}^{25}+14.4$
(c 1.1, MeOH), ee 77%

$(-)-26,35 \%$
$[\alpha]_{D}^{25}-6.8$
(c $1.08, \mathrm{CHCl}_{3}$)

$(-)-15$
$[\alpha]_{\mathrm{D}}^{24}-15.4$
(c $0.8, \mathrm{MeOH}$),
ee > 95\%

Scheme 3 Reagents and conditions: i, Lipase PS (Amano), vinyl acetate. $30^{\circ} \mathrm{C}, 30 \mathrm{~h}$; ii, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$

Scheme 4 Reagents and conditions: i, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{PhCO}_{2} \mathrm{H}, \mathrm{DEAD}, \mathrm{THF}$, 72%; ii, PhCOCl, pyridine, DMAP, 39%
$20.66(\mathrm{C}), 27.67\left(3 \times \mathrm{CH}_{3}\right), 28.42\left(3 \times \mathrm{CH}_{3}\right), 37.82\left(\mathrm{CH}_{2}\right), 44.64$ $\left(\mathrm{CH}_{2}\right), 75.39(\mathrm{CH}), 77.12(\mathrm{CH})$ and $81.04(\mathrm{CH}) ; m / z 258\left(\mathrm{M}^{+}\right.$, $0.2 \%), 201\left[\left(\mathrm{M}-\mathrm{Bu}^{\prime}\right), 33\right], 159\left[\left(\mathrm{Bu}_{2}{ }_{2} \mathrm{SiOH}\right)^{+}, 100\right], 115(38), 77$ (74) and 57 (36) [Found (EI): $\mathrm{M}^{+} 258.1649 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3}$ Si requires 258.1651].

($1 \alpha, 5 \alpha, 6 \beta$)-3,3-Di-tert-butyl-6-(diethylphosphono)methoxy-2,4-dioxa-3-silabicyclo|3.2.1 |octane 14

To the alcohol $13(1.78 \mathrm{~g}, 6.90 \mathrm{mmol})$ in THF ($22 \mathrm{~cm}^{3}$) at $-25^{\circ} \mathrm{C}$ was added butyllithium (2.5 M solution in hexanes; 3.3 $\mathrm{cm}^{3}, 8.25 \mathrm{mmol}$) an internal reaction temperature $<-20^{\circ} \mathrm{C}$ being maintained. The reaction mixture was stirred at $-25^{\circ} \mathrm{C}$ for 30 min . To this solution was added diethylphosphonomethyl triflate ($2.83 \mathrm{~g}, 9.43 \mathrm{mmol}$) in THF ($14 \mathrm{~cm}^{3}$), again an internal reaction temperature $<-20^{\circ} \mathrm{C}$ being maintained. The reaction mixture was stirred at $-25^{\circ} \mathrm{C}$ for an additional 30 min . Saturated aqueous sodium hydrogen carbonate $\left(90 \mathrm{~cm}^{3}\right)$ was carefully added to the reaction mixture which was then warmed to

Fig. 1 CD spectrum of the dibenzoate (-)-28
room temperature, and extracted with ether $\left(4 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo and the residue was flash chromatographed over silica [eluent EtOAc-LP (4:1)] to yield the title product as a colourless oil ($2.62 \mathrm{~g}, 6.42 \mathrm{mmol}, 93 \%$); $\nu_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2940 \mathrm{~ms}$ (CH str.), 2862 ms (CH str.), 1479 m (CH def.), $1260 \mathrm{~m}(\mathrm{P}=\mathrm{O}), 1109 \mathrm{~s}$ (CO str.), 1055s (SiO), 1028s (POalkyl), $983 \mathrm{~s}, 824 \mathrm{~ms}, 765 \mathrm{~m}$ and $641 \mathrm{~ms} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.33(6 \mathrm{H}, \mathrm{t}, J 7.1$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.69(1 \mathrm{H}$, ddd, $J 13.8,2.9,2.5,8 \beta-\mathrm{H}), 1.72(1$ H , ddd, $J 15.4,4.8,2.6,7 \beta-\mathrm{H}), 2.39$ (1 H , br d, $J 13.8,8 \alpha-\mathrm{H}$), 2.59 (1 H, ddd, $J 15.4,6.8,2.8,7 \alpha-\mathrm{H}), 3.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right)$, $4.14\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.6-\mathrm{H}\right), 4.41(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $4.59(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.44\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5.7\right.$, $\left.2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 20.53(\mathrm{C}), 20.65(\mathrm{C}), 27.63\left(3 \times \mathrm{CH}_{3}, \mathrm{Bu}^{\prime}\right)$, $28.38\left(3 \times \mathrm{CH}_{3}, \mathrm{Bu}^{\prime}\right), 38.17\left(\mathrm{CH}_{2}\right), 42.37\left(\mathrm{CH}_{2}\right), 62.41\left(\mathrm{CH}_{2}, \mathrm{~d}\right.$, $\left.{ }^{2} J_{\mathrm{CP}} 6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.45\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.06$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\text {CP }} 168, \mathrm{PCH}_{2} \mathrm{O}\right), 74.91(\mathrm{CH}), 76.76(\mathrm{CH})$ and 87.27 $\left(\mathrm{CH}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 11.9,6-\mathrm{C}\right) ; ~ m / z 408\left(\mathrm{M}^{+}, 0.2 \%\right), 351\left[\left(\mathrm{M}-\mathrm{Bu}^{1}\right)^{+}\right.$, 100], 229 (98) and $57\left(\mathrm{Bu}^{++}, 39\right)$ [Found (EI): M ${ }^{+} 408.2109$. $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{PSi}$ requires 408.2097].

(1 $\alpha, 3 \alpha, 4 \beta$)-4-(Diethylphosphono)methoxycyclopentane-1,3-diol (\pm)-15

Ammonium fluoride ($3.8 \mathrm{~g}, 103 \mathrm{mmol}$) was added to a stirred solution of the silyl ether $14(2.62 \mathrm{~g}, 6.42 \mathrm{mmol})$ in methanol ($170 \mathrm{~cm}^{3}$) and the reaction mixture was stirred at room temperature for 24 h . Silica $(40 \mathrm{~g})$ was added to the mixture and the solvent removed in vacuo. The silica was packed onto the top of a column and eluted with LP-EtOAc ($1: 1$) followed by EtOAc$\mathrm{MeOH}(5: 1)$ to give the title product as a colourless oil $(1.44 \mathrm{~g}$, $5.37 \mathrm{mmol}, 84 \%) ; R_{\mathrm{F}} 0.30$ [EtOAc-MeOH (5:1)]; $v_{\text {max }}(\mathrm{film}) /$ cm^{-1} 3348s (OH str.), 2984s (CH str.), 2938s (CH str.), 1239s $(\mathrm{P}=\mathrm{O})$ and $1094 \mathrm{~s}\left(\mathrm{CO} \mathrm{str}\right.$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.34(6 \mathrm{H}, \mathrm{t}$, $\left.J 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.53(1 \mathrm{H}, \mathrm{dt}, J 13.6,6.0,2-\mathrm{H}), 1.94(2 \mathrm{H}$, $\mathrm{m}, 2 \times 5-\mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{dt}, J 13.6,6.8,2-\mathrm{H}), 3.90(3 \mathrm{H}, \mathrm{m}$, $\mathrm{PCH}_{2} \mathrm{O}$ and $\left.4-\mathrm{H}\right), 4.02(1 \mathrm{H}, \mathrm{td}, J 6.4,4.0,3-\mathrm{H}), 4.16(4 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$) and $4.24(1 \mathrm{H}$, quin, $J 6.2,1-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 16.69\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5.7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 39.99\left(\mathrm{CH}_{2}\right.$, $5-\mathrm{C}), 42.60\left(\mathrm{CH}_{2}, 2-\mathrm{C}\right), 63.99\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 167.7, \mathrm{PCH}_{2} \mathrm{O}\right)$, $64.12\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.14\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $\left.6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 70.28(\mathrm{CH}, 1-\mathrm{C}), 76.67(\mathrm{CH}, 3-\mathrm{C})$ and 89.37 $\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}\right.$ 12.7, 4-C); m/= $269\left[(\mathrm{M}+\mathrm{H})^{+}, 0.4^{\prime} \%\right], 152$ $\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 85\right\}, 125$ (100) and 97 (44) [Found (El): $(\mathrm{M}+\mathrm{H})^{+}$269.1160. $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{P}$ requires 269.1154].

General procedure for introducing the bases under Mitsunobu conditions

A solution of DEAD ($117 \mu \mathrm{l}, 0.744 \mathrm{mmol}$) in dioxane ($1.1 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of the diol 15 (100
$\mathrm{mg}, 0.373 \mathrm{mmol}$), triphenylphosphine ($196 \mathrm{mg}, 0.748 \mathrm{mmol}$) and one of the nucleobases (0.746 mmol) in dioxane ($3.6 \mathrm{~cm}^{3}$) at room temperature. The reaction mixture was stirred until complete (TLC evidence, typically 24 h) after which it was evaporated in vactuo. The residue was flash chromatographed to yield the products.

9-|($\left.1^{\prime} \beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-(Diethylphosphono)methoxy-3'-

 hydroxycyclopentyl|-6-chloropurine 16 and the $\mathrm{N}-7$ isomer 17 The above standard procedure (double quantity) was followed with the diol $15(200 \mathrm{mg}, 0.746 \mathrm{mmol})$ and 6-chloropurine (230 $\mathrm{mg}, 1.492 \mathrm{mmol}$). Flash chromatography eluting with EtOAcMeOH (9:1) yielded the $N-9$ isomer 16 ($205 \mathrm{mg}, 0.507 \mathrm{mmol}$, $70 \%) ; R_{\mathrm{F}} 0.36[\mathrm{EtOAc}-\mathrm{MeOH}(5: 1)] ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 266$ ($\varepsilon / 1000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} 8548$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3372 \mathrm{br}, \mathrm{s}(\mathrm{OH}$ str.), 2986ms (CH str.), 1591s (C=N), 1559s (C=N), 1397s (CH_{3} sym. def.), 1236s ($\mathrm{P}=\mathrm{O}$), 1025s ($\mathrm{PO}-\mathrm{alkyl}$), 955 s and 636 s ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.34\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.19(1$ $\left.\mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 2.42\left(2 \mathrm{H}, \mathrm{m}, 2 \times 2^{\prime}-\mathrm{H}\right), 2.81(1 \mathrm{H}$, ddd $, J 15,9,5.8$, $\left.5^{\prime}-\mathrm{H}\right), 4.00\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.19(4 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 4.46 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}$), 5.39 ($1 \mathrm{H}, \mathrm{dtd}, J 9,8.1,5.5$, $\left.1^{\prime}-\mathrm{H}\right), 8.66(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $8.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 15.39\left(\mathrm{CH}_{3}\right.$, d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5.4,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.31\left(\mathrm{CH}_{2}\right.$, $\left.5^{\prime}-\mathrm{C}\right), 39.12\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 53.08\left(\mathrm{CH}, \mathrm{I}^{\prime}-\mathrm{C}\right), 62.58\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}}\right.$ $\left.168, \mathrm{PCH}_{2} \mathrm{O}\right), 62.82\left(\mathrm{CH}_{2}\right.$, d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{CP}} 6.7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 74.15$ (CH, $\left.3^{\prime}-\mathrm{C}\right), 87.56$ (CH, d, $\left.{ }^{3} J_{\mathrm{CP}} 12.6,4^{\prime}-\mathrm{C}\right), 131.09$ (C), 145.69 $(\mathrm{CH}), 149.75(\mathrm{C}), 151.35(\mathrm{CH})$ and $151.84(\mathrm{C}) ; \mathrm{m} /=404\left(\mathrm{M}^{+}\right.$, $6 \%), 253(100), 152\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right\}^{+}, 86\right\}$ and 125 (100) [Found (El): $\mathrm{M}^{+}, \quad 404.1019 . \mathrm{C}_{15} \mathrm{H}_{22}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{P}$ requires 404.1016]. Further elution yielded the $N-7$ isomer $17(35 \mathrm{mg}$, $0.087 \mathrm{mmol}, \quad 12 \%) ; \quad R_{\mathrm{F}} \quad 0.25 \quad$ [EtOAc-MeOH (5:1)]; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 270\left(\varepsilon / 1000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} 10874\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3374br, ms (OH str.), 2985ms (CH str.), 1595s (C=N), 1536s ($\mathrm{C}=\mathrm{N}$), 1385s (CH_{3} sym. def.), 1260s ($\mathrm{P}=\mathrm{O}$), 1097s ($\mathrm{C}-\mathrm{O}$), 1032s (PO-alkyl), 976 s and $754 \mathrm{~ms}(\mathrm{C}-\mathrm{Cl}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 1.34\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.21\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $2.45\left(2 \mathrm{H}, \mathrm{m}, 2 \times 2^{\prime}-\mathrm{H}\right), 2.87\left(1 \mathrm{H}\right.$, ddd, $\left.J 15,9,6,5^{\prime}-\mathrm{H}\right), 3.99$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.00\left(\mathrm{l} \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.17(4 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $4.45\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.75(1 \mathrm{H}, \mathrm{dtd}, J 9,7.8,4.4$, $\left.1^{\prime}-\mathrm{H}\right), 8.77(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.87(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 15.39\left(\mathrm{CH}_{3}\right.$, d, $\left.{ }^{3} J_{\mathrm{CP}} 5.7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 37.32\left(\mathrm{CH}_{2}\right.$, $\left.5^{\prime}-\mathrm{C}\right), 40.40\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 55.85\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 62.54\left(\mathrm{CH}_{2}\right.$, d, ${ }^{1} J_{\mathrm{CP}}$ 168, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 62.80\left(\mathrm{CH}_{2}\right.$, d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{CP}} 6.5,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 74.12$ (CH, $\left.3^{\prime}-\mathrm{C}\right), 87.68$ (CH, d, $\left.{ }^{3} J_{\mathrm{CP}} 12,4^{\prime}-\mathrm{C}\right), 143.12$ (C), 148.24 $(\mathrm{CH}), 151.34(\mathrm{C}), 151.48(\mathrm{CH})$ and $161.31(\mathrm{C}) ; \mathrm{m} / z 404\left(\mathrm{M}^{+}\right.$, $2 \%), 253(52), 204(45), 155\left[(\mathrm{~B}+\mathrm{H})^{+}, 61\right], 152$ \{((EtO) $)_{2}^{-}$ $\left.\left.(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 60\right\}, 125$ (88) and 97 (100) [Found (EI): M ${ }^{+}$, 404.0996. $\mathrm{C}_{15} \mathrm{H}_{22}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{P}$ requires 404.1016].
9-($\left(1^{\prime} \beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)$-4'-(Diethylphosphono)methoxy-3'-hydroxy-

 cyclopentyl|-2-amino-6-chloropurine 18 and the $N-7$ isomer 20The above standard procedure was followed with the diol 15 ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$) and 2-amino-6-chloropurine (126 mg , $0.746 \mathrm{mmol})$. Flash chromatography eluting with $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}(95: 5)$] yielded the $N-9$ isomer 18 ($60 \mathrm{mg}, 0.143 \mathrm{mmol}$, $38 \%) ; R_{\mathrm{F}} 0.25$ [$\left.\mathrm{EtOAc}-\mathrm{MeOH}(5: 1)\right] ; \hat{\lambda}_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 310$ ($\varepsilon / 1000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} 10338$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3333 \mathrm{br}$, s (OH str.), 2929 m (CH str.), 1611s ($\mathrm{C}=\mathrm{N}$), 1559s ($\mathrm{C}=\mathrm{N}$), 1232s ($\mathrm{P}=\mathrm{O}$), $1047 \mathrm{~s}(\mathrm{CO})$ and 1022 s (PO-alkyl); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.34$ ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 2.11 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$), $2.33(2 \mathrm{H}, \mathrm{m}$, $\left.2 \times 2^{\prime}-\mathrm{H}\right), 2.72\left(1 \mathrm{H}\right.$, ddd, $\left.J 15,9,6,5^{\prime}-\mathrm{H}\right), 3.95\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, $3.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.18\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.42(1 \mathrm{H}$, $\left.\mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.14\left(1 \mathrm{H}, \mathrm{dtd}, J 9,8.1,5.5,1^{\prime}-\mathrm{H}\right)$ and $8.17(1 \mathrm{H}$, $\mathrm{s}, 8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 15.39\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6\right.$, $\left.2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.04\left(\mathrm{CH}_{2}\right), 38.83\left(\mathrm{CH}_{2}\right), 52.16\left(\mathrm{CH}, \mathrm{I}^{\prime}-\mathrm{C}\right)$, $62.54\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 168, \mathrm{PCH}_{2} \mathrm{O}\right), 62.81\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6\right.$, $\left.2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 74.20\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 87.56\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 12.5,4^{\prime}-\right.$ C), $123.69(\mathrm{C}), 141.84(\mathrm{CH}), 150.03(\mathrm{C}), 153.78(\mathrm{C})$ and 160.04 (C); m/ $219\left(\mathrm{M}^{+}, 7 \%\right), 268(81), 251\left[(\mathrm{M}-\mathrm{B})^{+}, 56\right], 170$ $\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ and 125 (65) [Found (EI): $\mathrm{M}^{+}, 419.1128$.
$\mathrm{C}_{15} \mathrm{H}_{23}{ }^{35} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{P}$ requires 419.1125]. Further elution yielded the unstable $N-7$ isomer $20(5 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \%), R_{\mathrm{F}} 0.12$ [EtOAc-MeOH (5:1)]; $\hat{\lambda}_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 320\left(\varepsilon / 1000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right.$ 5000); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.34\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $2.13\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 2.37\left(2 \mathrm{H}, \mathrm{m}, 2 \times 2^{\prime}-\mathrm{H}\right), 2.82\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ H), $3.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.41$ (1 H, m, $3^{\prime}-\mathrm{H}$ or $\left.4^{\prime}-\mathrm{H}\right), 4.53\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ or $\left.3^{\prime}-\mathrm{H}\right), 5.53(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right)$ and $8.46(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$.

9-|($\left.1^{\prime} \boldsymbol{\beta}, \mathbf{3}^{\prime} \alpha, 4^{\prime} \beta\right)-\mathbf{4}^{\prime}$-(Diethylphosphono)methoxy-3'-acetoxy-cyclopentyll-2-acetylamino-6-chloropurine 19

A mixture of the diol 15, 2-amino-6-chloropurine, and the $\mathrm{N}-9$ isomer 18 was acetylated under standard conditions (acetic anhydride, pyridine, DMAP). Flash chromatography of the product eluting with [EtOAc-MeOH (95:5)] yielded the diacetate 19; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1735 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1571 \mathrm{~s}, 1372 \mathrm{~s}, 1239 \mathrm{~s}$ $(\mathrm{P}=\mathrm{O})$ and $1025 \mathrm{~s}(\mathrm{PO}-\mathrm{alkyl}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.36\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.09(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{COO}\right), 2.18\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 2.49\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NHCOCH}_{3}\right.$ and $\left.2 \times 2^{\prime}-\mathrm{H}\right), 2.74\left(1 \mathrm{H}\right.$, ddd, $\left.J 15.5,10,6,5^{\prime}-\mathrm{H}\right), 3.95(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.09\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.19\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, 5.25 (1 H, dtd, $\left.J 9.5,8.1,5,1^{\prime}-\mathrm{H}\right), 5.36\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 8.28(1$ $\mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $8.51(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $16.51\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 16.53\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5.5\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 21.04\left(\mathrm{CH}_{3}\right), 25.07\left(\mathrm{CH}_{3}\right), 37.37\left(\mathrm{CH}_{2}\right), 37.39$ $\left(\mathrm{CH}_{2}\right), 52.72(\mathrm{CH}), 62.60\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CP}} 6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.66$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.9, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 63.59\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 169, \mathrm{PCH}_{2} \mathrm{O}\right)$, 76.61 (CH), 84.55 (CH, d, $\left.{ }^{3} J_{\mathrm{CP}} 11,4^{\prime}-\mathrm{C}\right), 128.21$ (C), 143.77 $(\mathrm{CH}), 151.18$ (C), 151.89 (C), 152.62 (C) and 170.00 $(2 \times \mathrm{C}=\mathrm{O}) ; m / z 503\left(\mathrm{M}^{+}, 1 \%\right), 169$ (42), $152\left\{\left[(\mathrm{EtO})_{2}{ }^{-}\right.\right.$ $\left.\left.(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 58\right\}, 125(85), 81$ (85) and 55 (100) [Found (EI): $\mathrm{M}^{+}, 503.1325 . \mathrm{C}_{19} \mathrm{H}_{27}{ }^{35} \mathrm{ClN}_{5} \mathrm{O}_{7} \mathrm{P}$ requires 503.1337].

$1-\mid\left(1^{\prime} \beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-(Diethylphosphono)methoxy-3'-hydroxy-cyclopentyl|-3-N-benzoylthymine 22 , the $\boldsymbol{O}-2$ isomer 23 and the debenzoylated product 24

The above standard procedure was followed using the diol 15 ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$), and 3 - N -benzoylthymine ($171 \mathrm{mg}, 0.746$ $\mathrm{mmol})$. Flash chromatography of the product eluting with [$\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5)\right]$ yielded the $O-2$ isomer $23(26 \mathrm{mg}, 0.054$ $\mathrm{mmol}, 15 \%), R_{\mathrm{F}} 0.21\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5)\right] ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3386 \mathrm{br}, \mathrm{m}$ (OH str.), 2985m, (CH str.), 1744s (C=O), 1611 ms (Ar), 1554ms (Ar), 1440s, 1242s (P=0), 1157s, (CO) and 1056s (PO-alkyl); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $1.34\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.87\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 2.05(1 \mathrm{H}, \mathrm{dt}$, $\left.J 14.5,7.5,2^{\prime}-\mathrm{H}\right), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.27$ (1 H , ddd, $J 14.5,7.5$, $\left.3.5,2^{\prime}-\mathrm{H}\right), 2.67\left(1 \mathrm{H}, \mathrm{dt}, J 14.5,7.5,5^{\prime}-\mathrm{H}\right), 3.78$ ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $3.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.41(1 \mathrm{H}$, td, $\left.J 7.5,5.5,3^{\prime}-\mathrm{H}\right), 5.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\mathrm{H}\right), 7.54(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{H})$, $7.66(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H}), 8.17(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{H})$ and $8.37(1 \mathrm{H}, \mathrm{s}, 6-$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.12\left(\mathrm{CH}_{3}\right), 16.42\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 16.47\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.59\left(\mathrm{CH}_{2}, 5^{\prime}-\right.$ C), $38.14\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 62.48\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 63.14$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.80\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 166, \mathrm{PCH}_{2} \mathrm{O}\right)$, 74.44 ($\mathrm{CH}, \mathrm{I}^{\prime}-\mathrm{C}$), $75.55\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 88.89$ ($\mathrm{CH}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 7,4^{\prime}-\mathrm{C}$), $115.59(\mathrm{C}, 5-\mathrm{C}), 128.39[\mathrm{C}(\mathrm{Ph})], 128.74$ [$2 \times \mathrm{CH}(\mathrm{Ph})], 130.44$ [$2 \times \mathrm{CH}(\mathrm{Ph})], 134.23$ [CH (Ph)], 161.73 (CH, 6-C), 163.15 [C, $(\mathrm{C}=\mathrm{O}) \mathrm{Ph}], 163.62(\mathrm{C}, 2-\mathrm{C})$ and $165.32(\mathrm{C}=\mathrm{O}, 4-\mathrm{C}) ; \mathrm{m} /=480$ $\left(\mathrm{M}^{+}, 0.3 \%\right), 355(11), 169(24), 125(22)$ and $105\left[(\mathrm{PhCO})^{+}, 100\right]$ [Found (El): $\mathrm{M}^{+}, 480.1671 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}$ requires 480.1662]. Further elution yielded the $N-1$ isomer $22(88 \mathrm{mg}, 0.183 \mathrm{mmol}$, $49 \%) ; R_{\mathrm{F}} 0.16\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5)\right] ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3392 \mathrm{br}$, m (OH str.), 2987m (CH str.), 1745s ($\mathrm{C}=\mathrm{O}$), 1695s ($\mathrm{C}=\mathrm{O}$), 1656s ($\mathrm{C}=\mathrm{O}$), $1443 \mathrm{~ms}, 1251 \mathrm{~s}(\mathrm{P}=\mathrm{O})$, 1026s (PO-alkyl) and 761 ms (monosub. benzene ring); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35$ (6 $\mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.74\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 1.97(4 \mathrm{H}, \mathrm{m}, \mathrm{Me}$ and $\left.2^{\prime}-\mathrm{H}\right), 2.20\left(1 \mathrm{H}\right.$, ddd, $\left.J 14,8.5,2,2^{\prime}-\mathrm{H}\right), 2.61$ (1 H , ddd, J 15, 10, 6, $5^{\prime}-\mathrm{H}$), 2.71 ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$), 3.84 ($\left.1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.87$ (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.35\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ H), $5.30\left(1 \mathrm{H}, \mathrm{dtd}, J 10,8.5,5.5,1^{\prime}-\mathrm{H}\right), 7.48(3 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{H}$
and $6-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H})$ and $7.90(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{H})$; $\delta_{\mathrm{H}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.54\left(\mathrm{CH}_{3}\right), 16.51\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5.6\right.$, $\left.2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 35.89\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 38.26\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 52.76$ $\left(\mathrm{CH}, \mathrm{I}^{\prime}-\mathrm{C}\right), 62.66\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.76\left(\mathrm{CH}_{2}, \mathrm{~d}\right.$, $\left.{ }^{2} J_{\mathrm{CP}} 8, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 63.76\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 169, \mathrm{PCH}_{2} \mathrm{O}\right), 74.48$ (CH, 3'-C), $87.40\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 11,4^{\prime}-\mathrm{C}\right), 111.77$ (C, 5-C), 129.12 [$2 \times \mathrm{CH}(\mathrm{Ph})$], $130.44[2 \times \mathrm{CH}(\mathrm{Ph})], 131.70[\mathrm{C}(\mathrm{Ph})$], 134.96 $[\mathrm{CH}(\mathrm{Ph})], 137.50(\mathrm{CH}, 6-\mathrm{C}), 150.11$ (C=O, 2-C), 162.80 ($\mathrm{C}=\mathrm{O}, 4-\mathrm{C}$) and $169.32[\mathrm{C},(\mathrm{C}=\mathrm{O}) \mathrm{Ph}] ; \mathrm{m} / \mathrm{z} 480\left(\mathrm{M}^{+}, 4 \%\right), 152$ $\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 36\right\}, 125(39)$ and $105\left[(\mathrm{PhCO})^{+}, 100\right]$ [Found (EI): M ${ }^{+}, 480.1664 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}$ requires 480.1662]. Further elution yielded the debenzoylated isomer 24 (20 mg , $0.053 \mathrm{mmol}, 14 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3380 \mathrm{br}$, ms (OH str), 2928 s (CH str.), 1666s ($\mathrm{C}=\mathrm{O}$), 1578 s ($\mathrm{C}=\mathrm{O}$), $1291 \mathrm{~ms}(\mathrm{P}=\mathrm{O})$, $1237 \mathrm{~ms}(\mathrm{C}-\mathrm{O}), 1028 \mathrm{~s}$ (PO-alkyl) and $970 \mathrm{~ms} ; \delta_{\mathrm{H}}(400 \mathrm{MHz} ;$ $\mathrm{CD}_{3} \mathrm{OD}$) $1.32\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.87(1 \mathrm{H}, \mathrm{dt}, J 15$, $\left.3.5,5^{\prime}-\mathrm{H}\right), 1.92(3 \mathrm{H}, \mathrm{d}, J 0.9, \mathrm{Me}), 2.11\left(2 \mathrm{H}, \mathrm{m}, 2 \times 2^{\prime}-\mathrm{H}\right)$, $2.58\left(1 \mathrm{H}, \mathrm{dt}, J 15,7,5^{\prime}-\mathrm{H}\right), 3.82\left(1 \mathrm{H}, \mathrm{dt}, J 7,3.5,4^{\prime}-\mathrm{H}\right)$, $3.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.28$ ($1 \mathrm{H}, \mathrm{td}, J 5.5,3.5,3^{\prime}-\mathrm{H}$), $5.40\left(1 \mathrm{H}, \mathrm{tt}, J 6.5,3.5,1^{\prime}-\mathrm{H}\right), 7.57$ ($1 \mathrm{H}, \mathrm{d}, J 0.9,6-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.38\left(\mathrm{CH}_{3}\right), 16.44$ $\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.26\left(\mathrm{CH}_{2}\right), 38.71\left(\mathrm{CH}_{2}\right)$, $62.68\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.98\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.21\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 167, \mathrm{PCH}_{2} \mathrm{O}\right), 75.62(\mathrm{CH})$, $76.06(\mathrm{CH}), 88.32\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 9,4^{\prime}-\mathrm{C}\right), 117.64(\mathrm{C}), 150.95$ $(\mathrm{CH}), 155.07(\mathrm{C})$ and $164.46(\mathrm{C}) ; m / z 376\left(\mathrm{M}^{+}, 2 \%\right), 225(22)$, 169 (47), $152\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 79\right\}, 125\left(\mathrm{~B}^{+}, 100\right)$ and 97 (51) [Found (EI): M^{+}, 376.1394. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}$ requires 376.1399].

1-|($1^{\prime} \boldsymbol{\beta}, \mathbf{3}^{\prime} \alpha, 4^{\prime} \beta$)-4'-(Diethylphosphono)methoxy-3'-hydroxy-

 cyclopentyl|-3- N -benzoyl-5-(2-bromovinyl)uracil 21To a stirred solution of triphenylphosphine ($242.3 \mathrm{mg}, 0.925$ $\mathrm{mmol})$ in anhydrous THF $\left(4 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added distilled dimethyl azodicarboxylate ($135 \mathrm{mg}, 0.925 \mathrm{mmol}$) dropwise over 10 min under an argon atmosphere. After 30 min , a solution of ($1 \alpha, 3 \alpha, 4 \beta$)-4-(diethylphosphono)methoxycyclopentane-1,3-diol 15 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) and 3-benzoyl-5-bromovinyluracil (238 $\mathrm{mg}, 0.74 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ was added dropwise over 15 \min to the stirred white slurry at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$ and then allowed to warm to ambient temperature at which it was kept for 3 h . Solvent was removed in vacuo at $30^{\circ} \mathrm{C}$, and the residue was chromatographed [EtOAc-MeOH ($95: 5$)] to afford the title compound ($129 \mathrm{mg}, 0.226 \mathrm{mmol}, 60 \%$) as a thick oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3360$, 2992, 1750, 1702, 1665, 1448, 1237 and 1026; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 1.37\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $2.15\left(2 \mathrm{H}, \mathrm{m}, 2 \times 2^{\prime}-\mathrm{H}\right), 2.62\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.90\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), $3.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.23\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.35$ ($\left.1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.30\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.95(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{HC}=)$, 7.34 ($1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{HC}=$), $7.54(2 \mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{H}$), 7.71 (1 H , $\mathrm{m}, p-\mathrm{H}), 7.95(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $7.96(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{H}) ; \delta_{\mathrm{C}}(75.5$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 16.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 16.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.5\left(\mathrm{CH}_{2}\right.$, $\left.5^{\prime}-\mathrm{C}\right), 39.4\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 55.5\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 63.0\left(\mathrm{CH}_{2}, \mathrm{~d}^{1}{ }^{1} J_{\mathrm{CP}} 168\right.$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 64.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 75.0\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right)$, $88.5\left(\mathrm{CH}, 4{ }^{\prime}-\mathrm{C}\right), 109.5(\mathrm{C}=\mathrm{CHBr}), 112.5(\mathrm{C}, 5-\mathrm{C}), 130.3$ $[2 \times \mathrm{CH}(\mathrm{Ph})], \quad 131.4 \quad[\mathrm{C}(\mathrm{Ph})], \quad 131.5 \quad[2 \times \mathrm{CH}(\mathrm{Ph})], \quad 132.8$ $[\mathrm{CH}(\mathrm{Ph})], 136.3$ ($C=\mathrm{CHBr}$), 142.5 (CH, 6-C), 150.4 ($\mathrm{C}=\mathrm{O}$, $2-\mathrm{C}), 162.1(\mathrm{C}=\mathrm{O}, 4-\mathrm{C})$ and $170.1[\mathrm{C},(\mathrm{C}=\mathrm{O}) \mathrm{Ph}] ; \delta_{\mathrm{P}}(121.5$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 23.5$ [Found (EI): $(\mathrm{M}+\mathrm{H})^{+}, 571.0850$. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{8} \mathrm{P}$ requires 571.0845].

Enzyme resolution of ($\mathbf{~})$-($1 \alpha, \mathbf{3 \alpha , 4 \beta}$)-4-(diethylphosphono)-methoxycyclopentane-1,3-diol 15

Lipase PS Amano (170 mg) was added to a solution of the diol 15 ($190 \mathrm{mg}, 0.706 \mathrm{mmol}$) in vinyl acetate ($15 \mathrm{~cm}^{3}$) and the mix-
 for 30 h . The enzyme was then filtered off and the residue was washed with ethyl acetate. The combined filtrate and washings were concentrated in vacuo and the residue was flash chromato-
graphed over silica [eluent $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95)] to yield ($1 R$, $3 S, 4 S$)-1-acetoxy-4-(diethylphosphono)methoxycyclopentan3 -ol $(+)-25$ as a colourless oil ($77 \mathrm{mg}, 0.248 \mathrm{mmol}, 35 \%$); $[a]_{\mathrm{D}}^{24}$ +19.7 (c 0.60, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3399 \mathrm{~m}$, br (OH str.), 2985m (CH str.), 1738s ($\mathrm{C}=\mathrm{O}$), $1247 \mathrm{~s}(\mathrm{P}=\mathrm{O})$ and 1026 s ($\mathrm{PO}-$ alkyl); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.34$ ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.69(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.02(5 \mathrm{H}, \mathrm{m}, 2 \times 5-$ H and $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.46(1 \mathrm{H}, \mathrm{dt}, J 14.5,7.5,2-\mathrm{H}), 3.87(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 3.92(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.15\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$ and $3-\mathrm{H})$ and $5.10(1 \mathrm{H}, \mathrm{tt}, J 7.3,3.7, \mathrm{I}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $16.43\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 16.47\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 21.17$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 36.71\left(\mathrm{CH}_{2}\right), 38.45\left(\mathrm{CH}_{2}\right), 62.46\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.8\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.88\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.71\left(\mathrm{CH}_{2}, \mathrm{~d}\right.$, $\left.{ }^{1} J_{\mathrm{CP}} 167, \mathrm{PCH}_{2} \mathrm{O}\right), 72.13(\mathrm{CH}), 75.68(\mathrm{CH}), 88.87\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}\right.$ $8.1,3-\mathrm{C})$ and $170.53(\mathrm{C}=\mathrm{O}) ; \mathrm{m} / \mathrm{z} 310\left(\mathrm{M}^{+}, 0.2 \%\right), 152$ $\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 100\right\}, 125$ (79) and 97 (25) [Found (EI): $\mathrm{M}^{+}, 310.1187 . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{7} \mathrm{P}$ requires 310.1181$]$. Further elution afforded ($1 S, 3 R, 4 R$)-3-acetoxy-4-(diethylphosphono)methoxy-cyclopentan-1-ol (-)-26 as a colourless oil ($76 \mathrm{mg}, 0.245 \mathrm{mmol}$, $35 \%) ;[a]_{\mathrm{D}}^{25}-6.8\left(c 1.08, \mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3392 \mathrm{~s}$, br $(\mathrm{OH}$ str.), 2978s (CH str.), 1730s ($\mathrm{C}=\mathrm{O}$), 1233s ($\mathrm{P}=\mathrm{O}$) and 1025 s (PO-alkyl); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(6 \mathrm{H}, \mathrm{t}, J 7$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.69(1 \mathrm{H}, \mathrm{dtt}, J 14.7,3.6,1.0,2-\mathrm{H}), 2.04(5 \mathrm{H}$, $\mathrm{m}, 2 \times 5-\mathrm{H}$ and $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.45(1 \mathrm{H}, \mathrm{dt}, J 14.7,7.0,2-\mathrm{H}), 3.84(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.14\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$ and $4-\mathrm{H}$), 4.41 (1 $\mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $5.04(1 \mathrm{H}, \mathrm{dt}, J 7.0,3.0,3-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 16.41\left(\mathrm{CH}_{3}, \quad \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 5.5,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 21.17$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 39.71\left(\mathrm{CH}_{2}\right), 40.51\left(\mathrm{CH}_{2}\right), 62.41\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.49$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 63.77\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 168, \mathrm{PCH}_{2} \mathrm{O}\right), 71.23(\mathrm{CH})$, $78.01(\mathrm{CH}), 85.87\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 11.8,4-\mathrm{C}\right)$ and $170.25(\mathrm{C}=\mathrm{O})$; $m / z 310\left(\mathrm{M}^{+}, 0.4 \%\right), 232(39), 152\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 100\right\}$, 125 (65) [Found (EI): $\mathrm{M}^{+}, 310.1175 . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{7} \mathrm{P}$ requires $310.1181]$. Treatment of $(+)-25(20 \mathrm{mg}, 0.0645 \mathrm{mmol})$ with potassium carbonate ($4 \mathrm{mg}, 0.029 \mathrm{mmol}$) in methanol $\left(1 \mathrm{~cm}^{3}\right.$) at $0^{\circ} \mathrm{C}$ for 6 h afforded an oil which was purified by flash column chromatography [EtOAc-MeOH (5:1)] to yield the ($1 R, 3 S, 4 S$)diol $(+)-15(15 \mathrm{mg}, 0.056 \mathrm{mmol}, 87 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{25}$ $+14.4(c 1.1, \mathrm{MeOH})($ ee $77 \%)$. A similar treatment of $(-)-26$ $(20 \mathrm{mg}, 0.0645 \mathrm{mmol})$ yielded the $(1 S, 3 R, 4 R)$-diol (-)-15 ($17 \mathrm{mg}, 0.0634 \mathrm{mmol}, 98 \%$); $[a]_{\mathrm{D}}^{24}-15.4$ (c.0.8, MeOH) (ee $>95 \%$). Spectral data for both enantiomers were identical with those for the racemic compound.

($1 R, 3 R, 4 R$)-1-Benzoyloxy-4-(diethylphosphono)methoxy-cyclopentan-3-ol (-)-27

DEAD ($12 \mu \mathrm{l}, 0.076 \mathrm{mmol}$) was added to a solution of triphenylphosphine ($20 \mathrm{mg}, 0.076 \mathrm{mmol}$) in THF $\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min . A solution of the $(-)-(1 R, 2 R, 4 S)$-diol $(-)-15(17 \mathrm{mg}, 0.0634 \mathrm{mmol})$ in THF $(0.2$ cm^{3}) was then added to the mixture, followed by a solution of benzoic acid ($9.3 \mathrm{mg}, 0.076 \mathrm{mmol}$) in THF $\left(0.2 \mathrm{~cm}^{3}\right)$. The reaction mixture was then allowed to warm to room temperature and stirred until the reaction was complete (TLC evidence). The solvent was then removed in vacuo, and the residue flash chromatographed eluting with EtOAc to yield the title product as a colourless oil ($17 \mathrm{mg}, 0.0457 \mathrm{mmol}, 72 \%$); $R_{\mathrm{F}} 0.45$ [EtOAc$\mathrm{MeOH}(5: 1)] ;[a]_{\mathrm{D}}^{28}-13.8$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3377 mw (OH str.), 1714s ($\mathrm{C}=\mathrm{O}$), 1277s ($\mathrm{P}=\mathrm{O}$) and 1025s (CO str.); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.33(3$ $\mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 1.87 (1 H , dddd, $J 15,7,6.5,1.5,5-\mathrm{H}$), 2.07 ($1 \mathrm{H}, \mathrm{dt}, J 15,7.5,2-\mathrm{H}$), 2.25 (1 H , dddd, $J 15,7,3.5,1.5$, 2H), $2.65(1 \mathrm{H}, \mathrm{dt}, J 15,7.5,5-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.92(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.02(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $4.44(1 \mathrm{H}, \mathrm{td}, J 7,5.5,3-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{tt}, J 7,3.5,1-\mathrm{H}), 7.42(2$ $\mathrm{H}, \mathrm{m}, 2 \times m-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{m}, p-\mathrm{H})$ and $8.01(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.45\left(\mathrm{CH}_{3}, \mathrm{~d}, J 5.6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.83$ $\left(\mathrm{CH}_{2}\right), 38.52\left(\mathrm{CH}_{2}\right), 62.51\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.99$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6.7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.85\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 166, \mathrm{PCH}_{2} \mathrm{O}\right)$, $72.56(\mathrm{CH}), 75.90(\mathrm{CH}), 89.01\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 7.7,4-\mathrm{C}\right), 128.30$ $(\mathrm{CH}), 129.56(\mathrm{CH}), 130.36(\mathrm{C}), 132.92(\mathrm{CH})$ and 166.12
(C=O); m/= $373 \quad\left[(\mathrm{M}+\mathrm{H})^{+}, \quad 0.6 \%\right], \quad 169 \quad$ (27), $\quad 152$ $\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 100\right\}, 125$ (92) and 105 (79) [Found (El): $\mathrm{M}^{+}, 372.1340 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{P}$ requires 372.1338].

($1 R, 3 R, 4 R$)-1,3-Dibenzoyloxy-4-(diethylphosphono)methoxycyclopentane (-)-28

Pyridine ($0.3 \mathrm{~cm}^{3}$) was added to the alcohol (-)-27 (12 mg , 0.032 mmol) at $0^{\circ} \mathrm{C}$. A catalytic amount of DMAP was added to the mixture which was then stirred at $0^{\circ} \mathrm{C}$ for 10 min . Benzoyl chloride ($40 \mu \mathrm{l}, 0.345 \mathrm{mmol}$) was added dropwise to the reaction mixture after which it was allowed to warm to room temperature and then stirred for 24 h . Ethyl acetate ($15 \mathrm{~cm}^{3}$) was added to the mixture and the organic phase was separated, washed with hydrochloric acid ($0.25 \mathrm{~m} ; 3 \times 8 \mathrm{~cm}^{3}$), water $\left(2 \mathrm{~cm}^{3}\right)$ and brine ($2 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The residue was chromatographed over silica [eluent EtOAc-LP (2:1), followed by EtOAc] to yield the title product as a colourless oil ($6 \mathrm{mg}, 0.0126 \mathrm{mmol}, 39 \%$); $R_{\mathrm{F}} 0.47$ (EtOAc); $[a]_{\mathrm{D}}^{24}-40$ (c $1.3, \mathrm{MeOH}$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3066 \mathrm{mw}$ (ArH str.), 2986 s (CH str.), 1719 s ($\mathrm{C}=\mathrm{O}$), 1602 m (Ar), 1584 m (Ar), 1452 m (CH def.), 1273s ($\mathrm{P}=\mathrm{O}$), 1108s (C-O), 1030s (PO-alkyl) and 753 and 711 both s (mono-sub. benzene ring); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right.$) 1.11 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.12\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.03$ ($1 \mathrm{H}, \mathrm{dt}, J 15,3.5,5 \beta-\mathrm{H}$), 2.19 (1 H , ddd, $J 15,7,3.5,2 \alpha-\mathrm{H}$), $2.36(1 \mathrm{H}, \mathrm{dt}, J 15,7,5 \alpha-\mathrm{H}), 2.45(1 \mathrm{H}$, dddd, $J 15,6.5,5.5,0.8$, $2 \beta-\mathrm{H}), 3.96$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}$), $4.01(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.08(4 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 5.56 (1 H, tdd, $J 7.2,5.5,4,1-\mathrm{H}$), 5.65 $(1 \mathrm{H}, \sim \mathrm{dt}, J 6.5,3.2,3-\mathrm{H}), 7.18(6 \mathrm{H}, \mathrm{m}, 4 \times m-\mathrm{H}$ and $2 \times p-\mathrm{H})$, $8.14(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{H})$ and $8.27(2 \mathrm{H}, \mathrm{m}, 2 \times o-\mathrm{H}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.44\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5.5,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 36.95$ $\left(\mathrm{CH}_{2}\right), 62.54\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 62.60\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 63.91\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CP}} 168, \mathrm{PCH}_{2} \mathrm{O}\right), 73.64(\mathrm{CH})$, $77.87(\mathrm{CH}), 84.90\left(\mathrm{CH}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 12,4-\mathrm{C}\right), 128.36(\mathrm{CH}), 128.48$ $(\mathrm{CH}), 129.63(\mathrm{CH}), 129.67(\mathrm{CH}), 129.77(\mathrm{C}), 130.14(\mathrm{C}), 133.05$ $(\mathrm{CH}), 133.30(\mathrm{CH}), 165.74(\mathrm{C}=\mathrm{O})$ and $166.26(\mathrm{C}=\mathrm{O}) ; m / z 476$ $\left(\mathrm{M}^{+}, 0.3 \%\right), 232(69), 152\left\{\left[(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{3}\right]^{+}, 59\right\}, 105$ $\left(\mathrm{PhCO}^{+}, 100\right)$ and $77\left(\mathrm{Ph}^{+}, 65\right)$ [Found (EI): M ${ }^{+}, 476.1591$. $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{8} \mathrm{P}$ requires 476.1600].

Acknowledgements

We thank the EPSRC and Chiroscience for a CASE award (to J. M. L. H.), MURST (60% funds) for financial support (to V. M.) and CNR (Rome) for some financial support (to A. G.). The EPSRC are also thanked for their support of the EPSRC National Chiroptical Spectroscopy Service at Birkbeck College.

References

1 J. Balzarini, E. Declercq. H. Baumgartner, M. Bodenteich and H. Griengl, Molecular Pharm., 1990, 37. 395: D. M. Huryn and M. Okabe. Chem. Rev. 1992. 92. 1745: L. Agrofolio, E. Suhas, A. Farese, R. Condom, S. R. Challand, R. A. Earl and R. Guedj. Tetrahedron, 1994, 50, 10611 ; N. Dyatkina, B. Costisella. F. Theil and M. von Janta-Lipinski. Tetrahedron Lett., 1994. 35, 1961; A. D. Borthwick, A. J. Crame, A. M. Exall and G. G. Weingarten, Tetrahedron Lett., 1994, 35, 7677; A. D. Borthwick and K. Biggadike, Tetruhedron. 1992, 48, 571.

2 V. Merlo, F. J. Reece, S. M. Roberts, M. Gregson and R. Storer. J. Chem. Soc. Perkin Trans. I, 1993, 1717.

3 V. Merlo, S. M. Roberts, R. Storer and R. C. Bethell, J. Chem. Soc:, Perkin Trans. I, 1994, 1477; D. M. Coe, S. M. Roberts and R. Storer, J. Chem. Soc:, Perkin Trans. I, 1992. 2695.

4 Y. F. Shealy and C. A. O'Dell, Tetrahedron Lett., 1969, 2231.
5 A. D. Borthwick, B. E. Kirk, K. Biggadike, A. M. Exall, S. Butt, S. M. Roberts, D. J. Knight, J. A. V. Coates and D. M. Ryan, J. Med. Chem., 1991, 34, 907.
6 E. Declercq, J. Balzarini, R. Bernaerts, P. Herdewijn and A. Verbruggen, Biochem. Biophy's. Res. Commun., 1985, 126, 397 and references therein.
7 D. M. Coe, A. Garofalo, S. M. Roberts, R. Storer and A. J. Thorpe, J. Chem. Soc., Perkin Trans. I, 1994, 3061; for other recent work in the area of carbocyclic nucleosides and nucleotides see: J. M. Hill. E. J. Hutchinson, D. M. Le Grand, S. M. Roberts, A. J. Thorpe and N. J. Turner, J. Chem. Soc., Perkin Trans. l, 1994, 1483; H. Gooding, S. M. Roberts and R. Storer, J. Chem. Soc:, Perkin Trans. I, 1994, 1891; R. McCague, R. A. MacKeith, H. F. Olivo, S. M. Roberts, S. J. C. Taylor and H. Xiong, Bioorg. Med. Chem., 1994, 2, 387; J. Hanrahan, H. Navratilova, K. A. Shoberu, D. H. G. Crout, D. W. Hutchinson, S. M. Roberts and E. M. H. Wellington, J. Chem. Soc., Perkin Trans. I, 1994, 3533.
8 M. Asami, Bull. Chem. Soc: Jpn., 1990, 63, 1402.
9 cf. E. J. Corey and P. B. Hopkins, Tetrahedron Lett., 1982, 23, 4871.
10 D. P. Phillion and S. S. Andrew, Tetrahedron Lett., 1986, 27, 1477.
11 See W. Zhang and M, J. Robins, Tetrahedron Lett.. 1992, 33, 1177.
12 A. Toyota, N. Katagiri and C. Kaneko, Synth. Commun., 1993, 23, 1295.

13 A. Toyota, N. Katagiri and C. Kaneko, Heterocycles, 1993, 36, 1625.
14 K. A. Cruickshank, J. Jirieny and C. B. Reese, Tetrahedron Lett., 1984, 25, 681.
15 J. J. Bronson, I. Ghazzouli, M. J. M. Hitchcock, R. R. Webb, II and J. C. Martin, J. Med. Chem., 1989, 32, 1457.
16 N. Harada and K. Nakanishi, Circular Dichroic Spectroscopy: Exciton Coupling in Organic Chemistry, Oxford University Press. 1983.

17 D. Pini, A. Mandoli, A. Iuliano and P. Salvadori, Tetrahedron Asymmetry, 1995, 6, 1031.

Puper $6 / 01133 \mathrm{~K}$
Received 15th February 1996
Accepted 29th July 1996

[^0]: \dagger Present address: Robert Robinson Laboratories. Department of Chemistry, University of Liverpool, PO Box 147, Liverpool, L69 3BX.

